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Abstract

White rust, caused by Albugo occidentalis, is one of the major yield-limiting diseases of spinach (Spinacia oleracea) in some major
commercial production areas, particularly in southern Texas in the United States. The use of host resistance is the most economical
and environment-friendly approach to managing white rust in spinach production. The objectives of this study were to conduct
a genome-wide associating study (GWAS), to identify single nucleotide polymorphism (SNP) markers associated with white rust
resistance in spinach, and to perform genomic prediction (GP) to estimate the prediction accuracy (PA). A GWAS panel of 346 USDA
(US Dept. of Agriculture) germplasm accessions was phenotyped for white rust resistance under field conditions and GWAS was per-
formed using 13 235 whole-genome resequencing (WGR) generated SNPs. Nine SNPs, chr2_53 049 132, chr3_58 479 501, chr3_95 114 909,
chr4_9 176 069, chr4_17 807 168, chr4_83 938 338, chr4_87 601 768, chr6_1 877 096, and chr6_31 287 118, located on chromosomes 2, 3, 4,
and 6 were associated with white rust resistance in this GWAS panel. Four scenarios were tested for PA using Pearson’s correlation
coefficient (r) between the genomic estimation breeding value (GEBV) and the observed values: (1) different ratios between the training
set and testing set (fold), (2) different GP models, (3) different SNP numbers in three different SNP sets, and (4) the use of GWAS-
derived significant SNP markers. The results indicated that a 2- to 10-fold difference in the various GP models had similar, although
not identical, averaged r values in each SNP set; using GWAS-derived significant SNP markers would increase PA with a high r-value
up to 0.84. The SNP markers and the high PA can provide valuable information for breeders to improve spinach by marker-assisted
selection (MAS) and genomic selection (GS).

Introduction

Spinach (Spinacia oleracea L.) is one of the important veg-
etable crops in the world economically, which was esti-
mated to average $490 million (fresh and for process-
ing) per year during 2018–20 in the United States (US),
with 97% of the value for the fresh market [1]. Spinach
is considered a “super food” due to a high concentra-
tion of phytonutrients and other health-promoting com-
pounds, including vitamin A and C, carotenoid, lutein,
folate, calcium, iron, and antioxidants [2, 3]. In the US,
spinach has become very popular during the past two
decades as healthy-conscious consumers have increased
the consumption of leafy vegetables. To meet the greater
demand for spinach, commercial production has evolved
into high density (up to 10 million/ha) planting, year-

round production cycles, overhead sprinkler irrigation
systems, high fertilizer application, and expanded pro-
duction areas; all of them create an environment con-
ducive for the development of diseases. Several diseases
reduce yield and quality individually or in combination,
thus posing serious challenges to commercial spinach
production. Spinach suffers from many diseases while
downy mildew, white rust, Fusarium wilt, Stemphylium
leaf spot, and anthracnose leaf spot are the most devas-
tating and economically important diseases of spinach.

White rust of spinach is caused by Albugo occidentalis,
an obligate oomycete that can reduce yield and quality
[3–8]. White rust has been an endemic throughout the
central and eastern US for many years but has also been
reported in other parts of the world, including Greece [9],
Mexico [10], and Turkey [11]. The persistent appearance
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of this disease and its expansion into wider geographic
areas pose a significant challenge to the spinach industry
in the US and world. If this pathogen is introduced into
major US production areas in California and Arizona that
produce over 90% of the fresh market product, it would be
devastating to the US spinach industry as the vast major-
ity of the cultivars adapted to these areas have little to
no resistance incorporated. Resistance to white rust has
been previously found in USDA spinach germplasm and
breeding lines [4, 7, 12–14]. High levels of resistance to
white rust have been reported in the spinach varieties
developed at the spinach breeding program of University
of Arkansas as this disease was a primary breeding goal
[3]; thus, the Arkansas germplasm has been used as a
source of resistance to transfer white rust resistance
into several commercial cultivars. However, even this
resistance material can suffer severe infection when con-
ditions are highly conducive for the disease development
[7, 12–14]. Yet, there is little information regarding the
genetics of white rust resistance in spinach. Thus it is
necessary to routinely evaluate and identify new spinach
resources for white rust resistance for the development
of cultivars with improved resistance. So far, only quanti-
tative resistance has been found and utilized as no major
genes have been reported for white rust resistance [5].

The publication of reference genomes and other new
assemblies [15–19] has made genome-wide variant dis-
covery in the germplasm panel and genome-wide asso-
ciation studies (GWAS) possible in spinach. With the
decreasing genotyping cost in recent years and advanced
statistical methods, GWAS and genomic selection (GS)
approaches are commonly utilized to improve complex
genetic traits in crops. GWAS, based on the genotyping
and phenotyping of a natural germplasm population
and high-density markers, has been employed to map
simple to complex traits and identify candidate genes
in many crops [20–22]. GWAS has been used in spinach
for many traits, including surface texture, edge shape,
and petiole color [23]; bolting, tallness, and erectness
[24]; leafminer resistance [25]; oxalate concentration [26];
Verticillium wilt resistance [27], Stemphylium leaf spot
resistance [28]; mineral nutrient contents [29]; white rust
resistance [30]; growth habit [31]; anthracnose resistance
[32]; and downy mildew resistance [33–36]. The identifi-
cation of single nucleotide polymorphism (SNP) markers
for the traits has provided valuable molecular tools for
breeders to develop spinach cultivars more efficiently. It
has been demonstrated that quantitative trait of white
rust resistance in spinach can be screened under field
conditions and is correlated with quantitative resistance
to downy mildew [4, 37]. Using a panel of 267 spinach
accessions with 6111 SNPs, Awika et al. (2019) [30] con-
ducted GWAS analysis for white rust resistance and iden-
tified 448 minor alleles (SNPs) associated with white rust
disease severity, which maybe be utilized in the selection
for resistant plants.

Genomic prediction (GP) is emerging as a promising
tool to improve the efficiency and speed of plant breed-

ing. So far, GP has been reported in several crops [38–
48] for various traits. Genomic estimation breeding value
(GEBV) is a key step in GS. Several approaches have been
proposed to determine GEBV, such as Bayesian methods
(Bayes A, Bayes B, Bayes LASSO, and Bayes ridge regres-
sion) and BLUP methods (RR-BLUP, gBLUP, and cBLUP).
The GS approaches have been adopted for variety of
traits in various crops [49–55]. All articles reported the
prediction accuracy (PA) estimates using the Pearson’s
correlation coefficient (r) between the observed pheno-
typic values and the predicted GEBV for each trait in a
validation set using several different models.

Currently, USDA-GRIN (Germplasm Resources Infor-
mation Network) has approximately 400 spinach acces-
sions, which were originally collected from 33 countries
and represent a diverse germplasm collection. The over-
all objectives of this study were to evaluate USDA spinach
germplasm for white rust resistance under the field con-
ditions and to identify resistance-associated SNP mark-
ers through GWAS to conduct marker-assisted selection
and genomic selection for white rust resistance.

Materials and methods
Plant materials (genome-wide association panel)
Three hundred forty-six spinach accessions of the USDA-
GRIN spinach germplasm collection were phenotyped
for white rust disease and genotyped by using whole-
genome resequencing in this study (Table S1 where S
signifies supplementary). The accessions in this GWAS
panel were originally collected from 32 countries, with
a majority (81.5%) from ten countries: Turkey (n = 107),
United States (US) (n = 55), China (n = 25), North Mace-
donia (n = 22), Afghanistan (n = 20), Iran (n = 15), Belgium
(n = 10), India (n = 10), Syria (n = 10), and Hungary (n = 8)
(Table S1).

White rust phenotyping
The 346 spinach accessions were evaluated for white rust
resistance in the Del Monte White Rust Nursery, Crystal
City, Texas, during the three winter seasons of 2015–
16, 2016–17, and 2017–18. The nursery is known to have
high white rust disease pressure over the three decades.
The field experiments were performed in a randomized
complete block (RCB) design with two replications. In
each block, each accession was planted in a 10-feet long
row, three feet between rows, and 4-inch between plants
within the row. Thus, there were about 30 plants in each
row with 60 plants of each accession for evaluation each
year. White rust disease was evaluated under natural
disease pressure without introducing external inoculum.
A susceptible cultivar, Viroflay, was planted as a spreader
row on both sides of the tested genotypes.

White rust disease was rated using a scale of 0 to 10
whereby a 0 = no disease, 1 = <1% of the total leaf area
covered with white rust infection, 2 = 1–10%, 3 = 11–20%,
4 = 21–30%, 5 = 31–40%, 6 = 41–50%, 7 = 51–60%, 8 = 61–
70%, 9 = 71–80%, and 10 = > 80% infected leaf area. After
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65–70 days from planting, around ten plants of each
genotype were scored for disease severity by estimating
the proportion of total leaf area canopy with symptoms
(chlorotic and necrotic lesions) and signs (sporulation
and pustules). The white rust disease severity was
recorded 2–3 times each season.

The 2017–2018 winter season trial had high white rust
disease pressure among the three years of evaluations,
while the disease severity was lower in the other two
years (data not shown), thus only disease severity data
from the 2017–18 winter season were reported in this
study. The white rust response data of the 346 spinach
accessions were analyzed for the analysis of variance
(ANOVA) with the general linear models (GLM) in JMP
Genomics 9 (SAS Institute, Cary, NC). Multiple compar-
isons among individual accessions were performed using
the student T-test at α = 0.05, and mean, range, standard
deviation (SD), standard error (SE), and coefficient of
variation (CV) of disease severity were computed. Distri-
bution of white rust disease across accessions was drawn
and the mean disease rating of each accession was used
as the phenotypic data for GWAS.

Genotyping
DNA was extracted from fresh leaves bulked from 5–
10 plants for each genotype. Qualified DNA for each
sample was sheared randomly into 350-bp fragments
by Covaris Ultrasonic Processor before sequencing. The
construction of the DNA libraries followed the process
of end repairing, adding A tails, purification, PCR ampli-
fication and library qualification [56]. The DNA libraries
were pair-end sequenced by whole-genome resequencing
(WGR) technology at 10x spinach genome size coverage
generating about 10 Gb sequence data for each sam-
ple using Illumina NovaSeq Sequencer machine at BGI
(https://www.bgi.com/). The spinach genome of Sp75 [18,
57] available at SpinachBase was used as a reference to
map the WGR data of the 346 spinach genotypes using
Burrows-Wheeler aligner software (BWA v0.7.8-r455 [58]).
SAMtools (v 0.1.19-44 428 cd) [58] were utilized to sort
the bam files and remove duplication reads. The program
Picard (v 1.111) [58] was used to merge the bam files from
the same sample, and the GATK software (v 3.5) [59] was
chosen to detect and filter SNPs and InDels.

Around 16 million raw SNPs were identified in the 346
spinach genotypes. Filtering and keeping the SNPs with
minor allele frequency (MAF) >2%, missing allele <30%,
and heterogeneous rate < 50%, retained 2 357 260 SNPs
distributed on six chromosomes (chr) that twere used in
this study. There are 217 531 SNPs on chr 1; 239 902 SNPs
on chr 2; 651, 097 SNPs on chr 3; 629, 147 SNPs on chr 4;
334 526 SNPs on chr 5; and 285 057 SNPs on chr 6.

Principal component analysis (PCA) and genetic
diversity
In this study, 8399 SNPs were randomly selected from
the 2 357 260 SNPs: 1073 SNPs on chr 1; 1106 SNPs on
chr 2; 2123 SNPs on chr 3; 1997 SNPs on chr 4; 1020

SNPs on chr 5; and 1080 SNPs on chr 6 (FigShare: https://
doi.org/10.6084/m9.figshare.17283194). The selected set
of SNPs was included in the principal component anal-
ysis (PCA) and genetic diversity analysis. PCA and genetic
diversity were analyzed with GAPIT 3 (Genomic Asso-
ciation and Prediction Integrated Tool version 3) [54,
60] (https://zzlab.net/GAPIT/index.html; https://github.
com/jiabowang/GAPIT3) by setting PCA = 2 to 10 and NJ
tree = 2 to 10. Phylogenetic trees were drawn by using
neighbor-joining (NJ) method.

Association analysis
GWAS was performed in a two step process. In the first
step, 2 357 260 SNPs were used to perform GWAS imple-
menting single marker regression (SMR), GLM (PCA), and
MLM (PCA + K) methods in TASSEL 5 [61]. However, we
only used the 8399 randomly selected SNPs to estimate
PCA and Kinship matrixes. PCA matrix was estimated
with the PCA tool in TASSEL 5, setting covariance (alter-
ative = correction) and the number of components = 2.
Kinship (K) was estimated in TASSEL 5 by using Scald_IBS
method. Based on GWAS analysis in TASSEL 5, there were
4836 SNPs with the logarithm of odds (LOD) [−Log10(P-
value)] > 4.0 either in SMR, GLM, or MLM (We use LOD
instead of –Log10(P-value) in this article.).

In the second step, 13 235 SNPs (4836 associated SNPs
in the first step plus the randomly selected 8399 SNPs
used for PCA and Kinship analysis) (FigShare: https://
doi.org/10.6084/m9.figshare.17283194) distributed on the
six spinach chromosomes (Fig. S1) were used to perform
GWAS using the SMR, GLM, and MLM models in TASSEL
5 and several models in GAPIT 3 [54, 60] program. In
GAPIT3, GWAS was performed using the general linear
model (GLM), mixed linear model (MLM), compressed
MLM (cMLM) [62], Settlement of MLM Under Progressively
Exclusive Relationship (SUPER) [63], multiple-locus MLM
(MLMM), fixed and random model circulating probability
unification (FarmCPU) [64] and bayesian-information
and linkage-disequilibrium iteratively nested keyway
(BLINK) [65] models. In addition, a t-test was conducted
for all 13 235 SNPs by using visual basic codes in
Microsoft Excel 2016.

Multiple TASSEL and GAPIT models were used to
find reliable and stable white rust resistance-associated
SNP markers and candidate genes and QTL regions in
spinach. The significant threshold of associations was
calculated using Bonferroni correction of P-value with
an α = 0.05 (0.05 / SNP number), and LOD value of 5.42
was used as significance threshold based on the 13 235
SNPs in this study.

Candidate gene identification/detection
Genes were searched within 50 Kb on either side of
significant SNPs of the spinach Sp75 genome annotation
at the SpinachBase site (http://www.spinachbase.org/).
Our emphasis was to find analogs of disease resistance
genes near the significantly associated SNP markers.
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Genomic prediction for genomic selection of
white rust resistance
The ridge regression best linear unbiased prediction
(rrBLUP) method was used to perfrom GP using the
rrBLUP package [66] in R Version 4.0.5. In addition, GP was
conducted with gBLUP and cBLUP implemented in GAPIT
package [54]; Bayesian models including Bayes A, Bayes
B, Bayes LASSO (BL), and Bayes ridge regression (BRR)
implemented in BGLR package [67]; and random forest
(RF) model implemented in Random Forest R package [68]
and support vector machines (SVM) [68] implemented
in kernlab packages. GP using these packages has been
reported in previous studies [49–53].

GP for white rust resistance was performed in 346
spinach accessions based on ratios of training / testing
sets, number of SNPs, and GP models. (1) GP was per-
formed using nine different ratios of training / testing
sets, 2 fold (1:1), 3-, 4-, 5-, 6-, 7, 8-, 9-, and 10-fold (9:1)
across three sets of SNPs: (i) all 13 235 SNPs, (ii) 40 SNP
markers, and (iii) 9 SNP markers (GWAS-derived SNP
markers). (2) Eight different SNP number sets from 9
SNPs to 4846 SNPs were used to estimate GP by BL for
three SNP sets: (i) Set.13235SNP, (ii) Set.4836SNP_select,
and (iii) Set.8839SNP.random. (3) GP was estimated with
nine GP models, BA, BB, BL, BRR, SVM, RF, rrBLUP, gBLUP,
and cBLUP, in cross-prediction for white rust resistance
among seven SNP sets (all, 40 m, 9 m, 40r, 9r, 40rr, and
9rr). These seven SNP sets were selected based on results
obtained and information provided in the result section.
In addition, GWAS-derived SNP markers for GP were ana-
lyzed and discussed.

The PA for the tested models in this study was esti-
mated by calculating the average Pearson’s correlation
coefficient (r) between the GEBVs estimates from the
training set and white rust phenotypic values in the
validation set or testing set [40, 53, 69]. The training
and testing sets were randomly generated 100 times; the
average r-value was estimated; and distribution charts
(boxplots) were drawn using the ggplot2 R package.

Results
Evaluation of white rust resistance
The white rust disease showed signs and symptoms on
leaves, and the disease severity was recorded using the
0 to 10 disease scale (Fig. 1). The scale (0–10) in the 346
spinach accessions did not show a normal distribution
but skewed toward a higher disease severity due to most
material being highly susceptible (Fig. 2) in the associa-
tion panel. The mean disease severity ranged from 1.0 to
6.5, averaged 4.8 with a standard deviation of 0.911 and
the CV was 17.2%. The data showed an extensive range
and variation of the white rust disease scale in the 346
accessions, confirming the suitability of the association
panel for GWAS. The lines NSL 6098, PI 175311, PI 220686,
PI 224959, PI 226671, PI 227045, and PI 648958 showed the
highest white rust resistant levels with a score of 2.0 or
less (Table 1 & S1), indicating their suitability as parents

in breeding programs to develop white rust-resistant
hybrids and cultivars.

Genetic diversity among white rust-resistant
lines
Among the 346 spinach accessions, 23 showed white rust
resistance with a rate 3 or below (Table 1), indicating
that the 23 spinach accessions can be used as parents
to develop new spinach cultivars or lines for white rust
resistance in breeding. Five of the 23 accessions were
originally collected from Afghanistan; two from China;
two from India; five from Iran; three from Turkey; and
six from United States (Table 1), indicating that the white
rust resistance was mainly distributed among Asia and
U.S. accessions in this study.

The genetic diversity analysis among the 23 accessions
showed that (1) the accessions from the same country
were located at neighbor each other with less genetic
distance in the phylogenetic tree in most cases; (2) two
clusters were grouped: the five accessions, PI 227045, PI
165994, PI 175311, PI 433210 and PI 648949 from Iran,
China and India as one group, and other 18 accessions as
another group; and (3) In group I, the four accessions, PI
207518, PI 220686, PI 211632, and PI 212120 had different
genetic base from others as I-outlier (Fig. 3, Table 1). The
phylogenetic analysis will provide information on how to
utilize these white rust-resistant accessions.

PCA and phylogenetic analysis
Based on PCA and phylogenetic analysis when PCA = 2
to 10 by GAPIT 3 in the 346 spinach accessions with
8399 randomly selected SNPs distributed on six chro-
mosomes, two sub-populations (clusters) were the most
clearly divided in the GWAS panel of the 346 accessions
(Fig. S2-1, S2-2, S2-3, S2-4, and Fig. 4). The GWAS panel
can also be divided into three subpopulations (clusters or
groups) but not for other sub-populations from PCA = 4 to
10 (Fig. 4, Fig. S2-1, S2-2, S2-3). Each of the 346 accessions
was arranged into its position in a phylogenetic tree of
two sub-populations by the neighbor-joining (NJ) method
drawn by GAPIT 3 (Fig. S2-5). The NJ phylogenetic trees
of two sub-populations and three sub-populations and
the 3D graphical plot of PCA in two sub-populations and
three sub-populations were shown in Fig. 4 and listed in
Table S1.

Based on 2-cluster, Q1 and Q2 consisted of 301 (87.0%)
and 45 (13.0%) accessions, respectively, nevertheless,
based on 3-cluster (G1 to G3), there were 301 (87.0%) G1,
26 (7.5%) G2, and 19 (5.5%) G3 accessions, respectively
(Table S2). Combining 2- and 3-cluster, all 301 accessions
in Q1 stayed at the same cluster G1; but the 45 accessions
in Q2 were divided into two groups G2 and G3 with 26
and 19 accessions, respectively (Table S2). The accessions
from India, Japan, and Mongolia were grouped into Q2.G2,
where the accessions were grouped from cluster Q2
based on two clusters and G2 based on three clusters
in the panel; the majority of accessions from China plus
all accessions from South Korea and Thailand (but only
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Figure 1. White rust field evaluation and leaf symptom

Figure 2. The distribution of white rust disease scale (0–10 scale) in 346
spinach lines

one accession each of the two countries) to Q2.G3; and
the accessions from other countries to Q1.G1 (Table S2).

Association study
Based on the six models in GAPIT 3 and three models in
TASSEL 5 when PCA = 2, 40 SNPs, located on chrs 1, 2, 3, 4,
5, and 6, were associated with the white rust resistance
(Table S3). The observed vs expected LOD [−log10(p)] dis-
tributions in QQ-plots showed a large divergence from
the expected distribution (Fig. S3 B), indicating that there
were SNPs associated with the white rust resistance in
the association panel. The Manhattan plot showed that a
dozen SNPs with LOD value greater than 5.42 (significant
threshold) across the six GWAS models from GAPIT 3
(Fig. S3 A & C), were associated with white rust resis-
tance.

BLINK had SNPs with LOD greater than 5.42 on chrs 1,
2, 3, 4, and 6 and FarmCPU had SNPs with LOD >5.42 on
chr 2, 3, 4, 5, and 6 (Fig. 5, Table S3), indicating that there
are SNP markers associated with white rust resistance.
Gapit.SUPER, Gapit.GLM, Tassel.GLM and Tassel.SMR
showed a peak at the region on chr 4, where a dozen
SNPs had LOD >5.42 and only this region had SNPs with
LOD >10 (Fig. 6, Fig. S4, Table S3), indicating there is a

Figure 3. The phylogenetic tree among 23 spinach accessions of white
rust resistance drawn by Mega 7. In the tree, the taxon name consists of
the spinach accession ID, the accession original country, and the white
rust scale. For the taxon name, PI648949 China 3 - PI648949, originally
collected from China, and the white rust scale is 3.

major QTL in the region of chromosome 4 for white rust
resistance. However, the Tassel.MLM (Fig. S4), Gapit.MLM,
and Gapit.MLMM (Fig. S5) don’t have any SNP with LOD
>5.42, but have dozen of SNPs with LOD >3.0 (Fig. S4 and
S5) and six SNPs had LOD score > 4.0 or 3.0 in the three
models, indicating that there were small-effect QTLs for
white rust resistance (Table S3).

After combining, nine SNPs, chr2_53 049 132, chr3_
58 479 501, chr3_95 114 909, chr4_9 176 069, chr4_17 807
168, chr4_83 938 338, chr4_87 601 768, chr6_1 877 096, and
chr6_31 287 118, located on chrs 2, 3, 4, and 6, respectively
were selected as the associated SNP markers for white
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Table 1. Top 23 spinach white rust resistant lines

Line ID ACCESSION NAME ORIGIN Country 2-cluster 3-cluster Group WR Scale

PI222270_Iran_Q1.G1_3 PI 222270 Esfenaj Iran Iran Q1 G1 I 3.0
PI222838_Iran_Q1.G1_3 PI 222838 Esfenaj Iran Iran Q1 G1 I 3.0
PI224959_Iran_Q1.G1_2 PI 224959 Cornell ID

#4
Iran Iran Q1 G1 I 2.0

PI226671_Iran_Q1.G1_1 PI 226671 Cornell ID
#10

Iran Iran Q1 G1 I 1.0

PI171858_Turkey_Q1.G1_3 PI 171858 Harlan
6652

Kastamonu,
Turkey

Turkey Q1 G1 I 3.0

PI173131_Turkey_Q1.G1_3 PI 173131 Cornell ID
#87

Malatya,
Turkey

Turkey Q1 G1 I 3.0

PI171859_Turkey_Q1.G1_3 PI 171859 Harlan
6725

Samsun,
Turkey

Turkey Q1 G1 I 3.0

PI648951_UnitedStates_Q1.G1_3 PI 648951 Cornell ID
#275

Maryland,
United
States

United
States

Q1 G1 I 3.0

PI648957_UnitedStates_Q1.G1_3 PI 648957 76 X 71 Maryland,
United
States

United
States

Q1 G1 I 3.0

PI648958_UnitedStates_Q1.G1_1.5 PI 648958 Cornell ID
#286

Maryland,
United
States

United
States

Q1 G1 I 1.5

PI648960_UnitedStates_Q1.G1_3 PI 648960 Cornell ID
#288

Maryland,
United
States

United
States

Q1 G1 I 3.0

PI648961_UnitedStates_Q1.G1_3 PI 648961 224 X 223 Maryland,
United
States

United
States

Q1 G1 I 3.0

NSL6098_UnitedStates_Q1.G1_2 NSL 6098 Norfolk
Savoy/

Bloomsdale

Virginia,
United
States

United
States

Q1 G1 I 2.0

PI212119_Afghanistan_Q1.G1_3 PI 212119 Cornell ID
#5

Afghanistan Afghanistan Q1 G1 I 3.0

PI207518_Afghanistan_Q1.G1_2.5 PI 207518 Cornell ID
#30

Afghanistan Afghanistan Q1 G1 I-
outlier

2.5

PI220686_Afghanistan_Q1.G1_2 PI 220686 Palek Afghanistan Afghanistan Q1 G1 I-
outlier

2.0

PI211632_Afghanistan_Q1.G1_2.5 PI 211632 Cornell ID
#35

Afghanistan Afghanistan Q1 G1 I-
outlier

2.5

PI212120_Afghanistan_Q1.G1_2.5 PI 212120 Cornell ID
#6

Afghanistan Afghanistan Q1 G1 I-
outlier

2.5

PI648949_China_Q2.G3_3 PI 648949 II9A0323 Beijing,
China

China Q2 G3 II 3.0

PI433210_China_Q2.G3_2.5 PI 433210 498 China China Q2 G3 II 2.5
PI165994_India_Q2.G2_3 PI 165994 Palak India India Q2 G2 II 3.0
PI175311_India_Q2.G2_2 PI 175311 Palak India India Q2 G2 II 2.0
PI227045_Iran_Q2.G2_2 PI 227045 Cornell ID

#201
Iran Iran Q2 G2 II 2.0

rust resistance (Table 2). The SNP, chr2_53 049 132,
located at 53049132 bp on chr 2 had a significantly
high LOD value at BLINK, SUPER, Gapit.GLM, and
Tassel.SMR with LOD values of 10.08, 5.96, 5.61, and
8.65, respectively (>5.42 threshold); high LOD value
of 4.87 in Tassel.GLM; but low LOD values of <2.5 in
FarmCPU, Gapit.MLM, MLMM, and Tassel.MLM (Table 2)
indicates that chr2_53 049 132 was associated with white
rust resistance but was not stable across all tested
models. SNP, chr3_58 479 501 at 58479501 bp on chr
3 had a large LOD value of 9.05 (>5.42) in FarmCPU,
and a LOD value from 2.5 – 5.42 in other eight models
except for Tassel.MLM with 1.87 (Table 2), indicating that

chr3_58 479 501 was but not strongly associated with
white rust resistance. Similar to SNP chr2_53 049 132,
SNP, chr3_95 114 909 at 95114909 bp on chr 3 had
significant LOD value >5.42 in BLINK and SUPER; a high
LOD value (LOD >4.0) at Gapit.GLM, Tassel.GLM; but a
low value (LOD <2.0) at FarmCPU, Gapit.MLM, MLMM
and Tassel.MLM (Table 2), indicating that chr3_95 114 909
was associated with white rust resistance but was not
stable across all tested models. SNP, chr4_9 176 069 at
9176069 bp on chr 4 had a high and significant LOD
value >5.42 in BLINK, FarmCPU, SUPER, Gapit.GLM,
Tassel.GLM, and SMR, but a low value (LOD <2.0) at
Gapit.MLM, MLMM, and Tassel.MLM (Table 2), indicating
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Figure 4. Population genetic diversity analysis in the association panel consisted of 346 USDA spinach germplasm accessions. Phylogenetic trees
drawn by neighbor-joining (NJ) method in (A) two sub-population and (B) three sub-population, and 3D graphical plot of the principal component
analysis (PCA) in (C) two sub-population and (D) three sub-population drawn by GAPIT 3. A large phylogenetic tree of the 3B can be visible for each of
the 346 spinach accessions is shown in Supplementary Figure S2–5.

that chr4_9 176 069 was a comparatively good marker
for white rust resistance. The SNP, chr4_17 807 168 at
17807168 bp on chr 4 had a very high and significant
LOD value >5.42 in SUPER, Gapit.GLM, Tassel.GLM and
SMR but a very low value at other models with LOD <1.0
(Table 2), indicating that chr4_17 807 168 was associated
with white rust resistance but did not show stable across
all tested models. SNP, chr4_83 938 338 at 83938338 bp
on chr 4 had a significant LOD value >5.42 in BLINK
and Gapit.GLM; high value (LOD =5.01) at SUPER; and
a LOD value >3.5 at both Tassel.GLM and SMR; but a
low value (LOD <1.2) at FarmCPU, Gapit.MLM, MLMM,
and Tassel.MLM (Table 2), indicating that chr4_83 938 338
was associated with white rust resistance but did not
show stability across all tested models. chr4_87 601 768
at 87601768 bp on chr 4 did not have a significant LOD
value >5.42 but had value >2.0 across all tested nine
models and the highest values across three MLM Models,
Gapit.MLM. MLMM, and Tassel.MLM with LOD value >4.0
(Table 2), indicating that the SNP chr4_87 601 768 showed
stability across nine models, although the LOD value
was not high but significant at P = 0.01. chr6_1 877 096
at 1877096 bp on chr 6 had significant LOD value >5.42
at FarmCPU; high LOD value >3.0 at Gapit.MLM, MLMM,

SUPER, Gapit.GLM, and Tassel.MLM; >2.30 at Tassel.GLM
and SMR; but low value with 1.08 at BLINK (Table 2),
indicating that chr6_1 877 096 was associated with white
rust resistance but did not show stability across all tested
models. chr6_31 287 118 at 31287118 bp on chr 6 showed
the best SNP markers with LOD value >2.4 at all nine
models; 12.18 at BLINK; >3.5 at Gapit.MLM, MLMM,
SUPER, Gapit.GLM, and Tassel.MLM; >2.9 at FarmCPU
and Tassel.GLM; and 2.49 at SMR (Table 2), indicating
that the SNP, chr6_31 287 118 was a very stable marker
associated with white rust resistance.

T-test for association
t-test showed dominance or recessive in each of the
selected 40 SNP markers with LOD >2.0 at P = 0.01
level significance for white rust resistance (Table S4).
Seven of the 40 SNPs, chr2_50 382 388, chr2_53 049 132,
chr3_78126596, chr4_17 691 593, chr4_17 807 168, chr5_
25899209, and chr5_51760073, did not have both homozy-
gous genotypes (SNP homozygosity in the panel of 346
spinach accessions) but have heterogeneous genotypes
and showed dominance for white rust resistance.
In addition, 14 SNPs had only one spinach acces-
sion; four SNPs had two accessions; two SNPs had
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Figure 5. Distribution of Manhattan plot (left) and QQ-plot (right) of GWAS for white rust resistance based on Blink and FarmCPU. For the Manhattan
plot, the x-axis presents the spinach 6 chromosomes and the y-axis for the LOD (−log(P-value)) value. For QQ-plot, the x-axis presents LOD
(−log(P-value)) value and y-axis for expected LOD (−log(P-value)) value.

Figure 6. Distribution of Manhattan plot (left) and QQ-plot (right) of GWAS for white rust resistance based on GLM and SUPER. For the Manhattan plot,
the x-axis presents the spinach 6 chromosomes and the y-axis for the LOD (−log(P-value)) value. For QQ-plot, the x-axis presents LOD (−log(P-value))
value and y-axis for expected LOD (−log(P-value)) value.

three accessions; and three SNPs had four accessions
with homozygosity in one of the SNP alleles, showing
dominance or over-dominance (Table S4). Eight SNPs,
chr3_58 479 501, chr4_9155049, chr4_9156552, chr4_
9163612, chr4_83 938 338, chr4_86 732 255, chr5_28734483,

and chr6_41 345 783 showed the significant differences
between two homozygous SNP alleles at P = 0.01 level
(LOD >2.0) (Table S4). Five of the eight SNPs had only two
or three accessions with homozygosity in one of the SNP
alleles (Table S4).
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Among the nine SNP markers selected (Table S4,
Table 2), chr2_53 049 132 showed dominance with allele
“T” as a beneficial allele for white rust resistance
and “C” as an un-beneficial allele for susceptibility;
chr3_95 114 909, chr4_9 176 069, chr4_17 807 168 and
chr4_83 938 338 also showed dominance; chr4_87 601 768
showed over-recessive; and chr3_58 479 501, chr6_
1 877 096, and chr6_31 287 118 showed partial-recessive.

Candidate genes for white rust resistance
A total of 121 genes were listed in Supplementary Table
S5 and they were located within 50 Kb distance from
the 40 associated SNP markers in Table S3. All Leucine-
Rich Repeat (LRR) genes plus those with less than 1 Kb
distance from the associated SNP markers were listed
in Table 3, where 13 genes were located at 12 associ-
ated SNP regions. Six SNPs were inside six genes and
three SNPs were with a distance less than 1 Kb from
a gene, respectively. Six SNPs were located less than 50
Kb from five disease resistance gene analogues encoding
LRR domains (Table 3).

The six gene models, Spo01590, Spo23694, Spo12071,
Spo12072, Spo14612, and Spo08236 contain a SNP
marker, chr2_50 382 388, chr2_53 049 132, chr4_9 152 378,
chr4_9 170 963, chr4_20 532 790, and chr4_86 732 255
respectively, on chrs 2 and 4 (Table 3). Whether these
six gene models are related to white rust resistance
needs further study. The Leucine-Rich Repeat (LRR) gene
model, Spo01686 located at 50399687 – 50401105 bp
on chr 2, is based on Sp75 spinach genome reference
located near SNP marker chr2_50 382 388 (distance of
17.299 Kbp). Spo12068, located at 9097039 – 9101229 bp
on chr 4, is located near SNP marker chr4_9 077 455
(distance of 19 548 Kbp). Both LRR models, Spo20901
and Spo20900, located at 17644108 -17646417 bp and
17 674 521 – 17 684 091 bp on chr 4, located near
the SNP marker chr4_17 691 593 with distance 45.176
Kbp and 7.502 Kbp, respectively. Spo04510, located at
31326235 – 31330354 bp in chr 6 is near the SNP marker
chr6_31 287 112 (39.123,kbp) (Table 3). Further studies
are needed to evaluate whether the five LRR genes are
related to white rust resistance.

Genomic prediction of white rust resistance
Genomic prediction with different ratios of the training set
to testing set

In this study, there were nine ratios between training and
testing sets, two GP models, and three SNP sets making
a total of 54 combinations. The average r-value (rȲ100)
and its standard error (SE) from the 100 runs for each
combination are listed in Table S6 and the 54 averaged
r values (rȲ100) displayed in charts created by R package
divided by two models: left half from BL (Bayesian LASSO)
and right half from rrBLUP, and grouped by the nine folds
with three SNP sets (Fig. S6).

The nine-fold sets had similar, although not identi-
cal, averaged r values (rȲ100) in each SNP set using the
same model, either BL or rrBLUP (Table S6, Fig. S6). From

rrBLUP, the r-value averaged 0.67, ranged from 0.63 (2
fold) to 0.69 (8- or 9- fold) in all.13235-SNP; averaged 0.39
and ranged from 0.38 to 0.40 in 40-SNP set; and averaged
0.23 and ranged from 0.22 to 0.25 in the 9-SNP marker set.
From BL, the r-value averaged 0.82 and ranged from 0.76
to 0.84 in all.13235-SNP set; averaged 0.73 and ranged
from 0.72 to 0.74 in the 40-SNP marker set; average
0.59 and ranged from 0.58 to 0.60 in 9-SNP.marker set
(Table S6). Overall, the 2-fold had a low r-value but had
a smaller SE. However, the SE increased when increas-
ing the fold number. In general, BL model had higher
r-value than rrBLUP. The all.13235.SNP set had higher
value than the other two sets and the 40-SNP.marker set
had a higher r-value than the 9-SNP.marker set (Table S6,
Fig. S6).

Genomic prediction with different SNP numbers

GP was performed with eight different SNP number
sets (9, 40, 100, 200, 500, 1000, 2000, and 4836 SNPs)
selected from three different SNP groups in cross-
predictions for white rust resistance using BL model in
three SNP sets: Set.13235SNP, Set.4836SNP.select, and
Set.8839SNP.random (Datasets available at FigShare:
https://doi.org/10.6084/m9.figshare.17283194). There
were 24 combinations for GP analysis, consisting of
eight SNP number sets selected from three SNP groups.
Each GP analysis was run for 100 times to calculate GP
statistical parameters and r values. The average r-value
(rȲ100) and SE of 100 runs for each GP combination are
presented in the Table S7 and Fig. S7.

The results showed that the average r value (rȲ100)
decreased when decreasing the SNP number (Table S7
and Fig. S7). From the Set.13235SNP, the average r-value
(rȲ100) was 0.79 when 4836 SNPs were used and decreased
to 0.25 when 9 SNPs were used. In the Set.4836SNP.select,
the average r-value (rȲ100) was 0.82 when 4836 SNPs were
used and decreased to 0.31 when 9 SNPs were used. In the
two SNP groups, the r-value was higher than 0.50 when
100 SNPs or more were used. But the average r-value
(rȲ100) was very low in the Set.8839SNP.random of the
SNP group; ranged from 0.19 to 0.07; and the highest was
only 0.19 when 4836 SNPs were used (Table S7, Fig. S7),
indicating that random SNP group without associated
markers included can’t be used for white rust resistance
in GS, but using associated SNP marker will increase
the selection efficiency; and when > = 100 SNPs with
associated markers can be used as a set to select white
rust resistance in GS.

Genomic prediction using different models

Nine GP models (BA, BB, BL, BRR, SVM, RF, rrBLUP, gBLUP,
and cBLUP) were used to conduct GP for white rust resis-
tance among seven SNP sets: all, 40 m, 9 m, 40r, 9r, 40rr,
and 9rr, where all signifies all 13 235 SNP set; 40 m is the
40 SNP markers in the Table S3; 9 m is the 9 SNP markers
listed in Table 2; 40r is a SNP set consisted of 40 SNPs
randomly selected from the 13 235 SNP set; 9r is a SNP set
of 9 SNPs randomly selected from the 13 235 SNP set; 40rr
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Figure 7. Genomic prediction (r-value) of nine GP models, BA, BB, BL, BRR, SVM, RF, rrBLUP, gBLUP, and cBLUP for white rust resistance among three
SNP sets in cross-prediction for white rust resistance in 346 spinach accessions for three SNP sets, all 13 235 SNPs (left group), 40 SNP markers (middle
group) and 9 SNP markers (right group).

is a set consisting of 40 SNPs randomly selected from the
random 8839 SNP set; and 9r is a set of 9 SNPs randomly
selected from the random 8839 SNP set (Table S8, Fig. 7).
The six GP models (BA, BB, BL, BRR, gBLUP, and cBLUP) had
similar high average r-value (rȲ100): > = 0.82 in all.13235-
SNP set; > = 0.73 in the 40-SNP marker set; and > =0.59 in
the 9-SNP marker set. The other three models, SVM, RF,
and rrBLUP, still had a high average r-value (rȲ100) > =5.2
in the all.

SNP set. SVM and RF have r-value > = 0.63 in the
40-SNP marker, and > =0.47 in 9-SNP marker set, but
rrBLUP had a low value with 0.38 and 0.25, respectively
(Table S8, Fig. 7), indicating that the six GP models (BA,
BB, BL, BRR, gBLUP, and cBLUP) are good GP models
to be utilized in GS for selecting white rust resistance
in spinach. All nine models had low rȲ100 values in
the four random sets (40r, 9r, 40rr, and 9rr), suggesting
that we can’t use a small SNP number randomly
selected from a million SNP set in GS for white rust
resistance.

Genomic prediction using GWAS-derived SNP markers

A higher r-value (rȲ100) were observed when using the
GWAS-derived SNP marker sets: > = 0.73 in 40-SNP
marker set (m40) and > =0.59 in 9-SNP marker set (9 m)
across the six GP models (BA, BB, BL, BRR, gBLUP, and
cBLUP) (Table S8, Fig. 7). An averaged 0.75 of rȲ100 value
in 40 m set and 0.61 in 9 m set were calculated across
nine GP models, which were much higher than those

from the four randomly selected SNP sets: either 40r, 9r,
40rr, or 9rr across all tested nine GP models (Table S8,
Fig. 7), indicating that the GWAS-derived SNP marker
sets had high PA and suggesting that we can use the
GWAS-derived SNP markers in GS for selecting white
rust resistance.

Discussion
Evaluation of white rust
White rust is a non-culturable oomycete pathogen mak-
ing it difficult to screen and select spinach genotypes for
resistance. Currently, no efficient method has been devel-
oped to evaluate white rust resistance in greenhouse or
growth chamber conditions as disease severity among
known resistant and susceptible genotypes is difficult
to discriminate in a single disease cycle [70]. There-
fore, field evaluations, whereby spinach genotypes can
be evaluated over multiple secondary infection cycles
over a longer period of time, can be used to evaluate
and select white rust-resistant lines in spinach [4]. For
example, some spinach genotypes that are known to
be highly resistant to white rust get infected, but the
lesions develop somewhat slower and the rust pustules
may not even break through the epidermis. As a result,
fewer infections occur on a given plant and the differ-
ence between a highly susceptible and highly resistant
line in a single infection cycle may not be noticeable,
but the differences become more pronounced over a
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longer period of time under field conditions. However,
even in a white rust disease nursery, as was used in this
study, disease severity is still highly dependent on the
environment from year to year, resulting in a low and
unpredictable selection efficiency. Establishing a uniform
spread of consistent white rust nurseries under field
setting is difficult to accomplish, requiring multiple years
of no-rotation spinach crop to build enough inoculum in
the soil. In this study, the 346 USDA spinach germplasm
accessions were evaluated for white rust resistance in the
Del Monte White Rust Nursery in Crystal City, Texas, for
three years during the three winter seasons of 2015–16,
2016–17, and 2017–18. The nursery was used for spinach
white rust evaluation for commercial spinach hybrids,
germplasm, and breeding lines where heavy disease pres-
sure had consistently been observed for 30 years when
environmental conditions were favorable for the disease.
Because the disease severity was relatively low in the
winter seasons 2015–2016 and 2016–2017 including the
known susceptible control lines, the white rust disease
severity ratings were not robust (i.e. false low ratings
due to escape from disease). However, disease severity
was high in the winter 2017–2018 season due to the
favorable environment. Therefore, this 2017–2018 disease
severity report was only used to conduct GWAS and
identify SNP markers associated with white rust. Based
on the white rust phenotypic data, 23 of 346 spinach
accessions showed relatively high resistance to white
rust. The accessions showing higher resistance with a
disease severity scale of 2.0 or less (Table 1 & S1) can be
used as parents in breeding programs to develop white
rust-resistant lines and cultivars.

Genome-wide association study and SNP marker
identification for white rust resistance
In this study, GWAS was performed in two steps. In
the first step, 4836 SNP markers associated with white
rust resistance were identified from 2 357 260 SNPs using
TASSEL 5. In the second step, 13 235 SNPs (the 4836 SNPs
from the first step plus the randomly selected 8399 SNPs)
were used to conduct GWAS by implementing multiple
models, including six models in GAPIT 3, three models in
TASSEL 5, and t-test. Forty SNP markers were associated
with white rust resistance with LOD >5.42 in one of
the six tested MLM models (Gapit.MLM, MLMM, SUPER,
FarmCPU, BLINK, or Tassel.MLM). After combining
analysis of the six models in GAPIT 3 and three models
in TASSEL 5, nine SNPs located on chrs 2, 3, 4, and 6 were
relatively consistent across the models and were selected
as the associated SNP markers for white rust resistance
in this study (Table 2). Awika et al. (2019) [30] conducted
GWAS analysis for white rust resistance in a panel of 267
spinach accessions with 6111 SNPs and reported a total
of 448 minor alleles (SNPs) associated with white rust
severity. None of the 448 SNPs reported by Awika et al.
(2019) [30] was validated in this study since their
approach targeted factors associated with susceptibility.
Therefore, it is possible to combine resistance and

susceptible associated SNPs found in this study to
improve spinach resistance. As expected, we observed
differences in the number of identified associated
SNPs when using TASSEL 5 vs GAPIT 3 GWAS tools or
different models such as BLINK, FarmCPU, GAPIT.MLM
and GAPIT.GLM. The same differences have been widely
reported and discussed in several publications [30–36,
53]. In this study, we selected SNPs as the markers
associated with white rust resistance by multiple models
combined, including six models in GAPIT 3 and three
models in TASSEL 5 if the SNP had a significant LOD
value across multiple models.

Candidate genes for white rust resistance
In this study, a total of 121 genes were identified to be
located within 50 Kb distance from the 40 associated SNP
markers (Table S3). Thirteen genes located at 12 associ-
ated SNP regions were selected as condidates for white
rust resistance, among them, five were disease resistance
gene analogue with LRR domain (Table 3). However, fur-
ther studies are needed to confirm whether the five LRR
genes are related to white rust resistance.

Despite the success of GWAS in identifying genetic
loci associated with several agronomic and disease
resistance-related traits, it will be challenging to pinpoint
the causal gene in each of these loci. A successful
GWAS only identifies probable genomic regions but
requires subsequent characterization for validating the
actual identification of causal relationship with disease
using proteomics/ transcriptional profiling. Given the
complexity and nature of the white rust, most genes
identified in our study, whether a given gene is likely to
be involved in determining a resistant phenotype alone
would need cloning individual genes in the appropriate
genetic background. Most verified plant disease resis-
tance genes isolated to date contain a nucleotide-binding
site and leucine-rich repeat (NBS-LRR) domains- similar
to the one we identified in this study. Activated NB-LRRs
represent a tip of the signaling cascade that triggers
defense responses and not the causal genes defining
the resistance alone. It will be impulsive to correlate
expression patterns of the identified candidate genes
and disease reaction. The percent variation (R-square%)
explained by individual SNP (Table 3) shows the strength
of these variants at the evolutionary and population
levels in defining resistance. Hence, the genes identified
in this study open new avenues to design white rust
resistance through systematic integration of selected
accessions in the breeding program of spinach and
other closely related species. Detailed characterization
of these genes, although intriguing, is beyond the scope
of this paper. However, we will continue pursuing the
relationship of these genes in resistance mechanisms as
a future work through additional studies.

Genomic prediction
In this study, the nine-fold sets from 2 fold (1:1) to 10-
fold (9:1) had similar, although not identical, averaged
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r values (rȲ100) in each SNP set using the same model,
either BL or rrBLUP (Table S6, Fig. S6). When increasing
the fold number, the SE was also increased, suggesting
that a larger training set and the smaller testing set
would increase the error. The 2-fold set has a smaller r-
value and showed that a smaller training set would have
less PA with a smaller r-value. Shi et al. (2021) [53] also
reported that different training/testing ratio sets showed
similar trends in GP analysis for soybean cyst nematode
resistance in common bean. Ravelombola et al. (2021)
[49] reported similar results for growth habit, flowering
time, and grain yield in the cowpea population evaluated
under drought conditions. Keller et al. (2020) [71] reported
that a training set of <30% reduces PA due to a small
sized training set that results in overfitting of the model.
They also noted that increasing training set >80% leads
to large variation between cross-validations with a small
validation set.

The six GP models (BA, BB, BL, BRR, gBLUP, and cBLUP)
had similar high average r-value (rȲ100): > = 0.82 in
all.13235-SNP set, > = 0.73 in the 40-SNP marker set,
and > =0.59 in the 9-SNP marker set. The three models,
SVM, RF, and rrBLUP, still had high average r-value
(rȲ100) > =5.2 in the all SNP set, > = 0.63 in the 40-SNP
marker, and > =0.47 in 9-SNP marker set, but rrBLUP
had low value with 0.38 and 0.25, respectively (Table S8,
Fig. 7), indicating that the six GP models are good GP
models to be utilized in GS for selecting white rust
resistance in spinach. Usually, the Bayesian models such
as BA, BB, BL, and BRR had high PA with higher r-value
[53]. The gBLUP and cBULP models in GAPIT tool had a
lower r-value than other models for SCN resistance in
common bean [53]. Since 2021, the gBLUP and cBLUP
models running in GAPIT 3 tool in Zhiwu Zheng’s lab has
improved their prediction and created higher PA than
other models as shown in this study and the two models
had the highest average r-value (rȲ100) with the smallest
SE (Table S8, Fig. 7), indicating their efficiency in GS for
white rust resistance in spinach.

GP was thirdly performed with eight different SNP
number sets from 9 to 4836 SNPs for white rust resistance
using BL model. The results showed that the average
r-value (rȲ100) decreased when decreasing the SNP num-
ber (Table S7 and Fig. S7). From the Set.13235SNP, the
average r-value (rȲ100) was 0.79 when 4836 SNPs were
used and decreased to 0.25 when 9 SNPs were used. In the
Set.4836SNP.select, the average r-value (rȲ100) was 0.82
when 4836 SNPs were used and decreased to 0.31 when
9 SNPs were used. In the two SNP groups, the r-value was
higher than 0.50 when 100 SNPs or more were used. How-
ever, the average r-value (rȲ100) was very low in randomly
selected set: Set.8839SNP.random, which was randomly
selected from 217 531 SNPs (4.06%); ranged from 0.07 to
0.19 (Table S7, Fig. S7), indicating that random SNP group
without associated markers included cannot be used for
white rust resistance in GS, but using associated SNP
marker will increase the selection efficiency. From this
study, 100 or more SNPs with associated markers can be

used as a set to select white rust resistance in GS. In
most reports, the smaller the number of SNPs resulted
in lowering the PA [40, 53, 71, 72]. Zhang et al. (2016)
[40] estimated PA (r-value) of seed size of 309 soybean
accessions and reported r = 0.85 using 2000 SNPs or 31 045
SNPs; and lowered to 0.8 when 1000 SNPs or 500 SNPs
were used.

In this study, GP was performed using GWAS-derived
SNP markers, either 4836 selected SNPs, 40-SNP marker
set, or 9-SNP marker set had higher PA (r-value) than the
randomly selected SNP sets in all of the tested GP models
(Table S6 and S8). The results suggest the advantage of
using the GWAS-derived SNP markers in GS for white
rust resistance. Zhang et al. (2016) [40] reported that
the r values were 25% higher when using GWAS-derived
SNP markers than using the same number of randomly
selected SNPs for seed size in soybean. Qin et al. (2019)
[72] also reported that the average r values were higher
when using SNP markers for 15 amino acid contents
in soybean seeds. Spindel et al. (2016) [73] developed a
GS model that combines RR-BLUP with GWAS derived-
markers and reported that this new model outperformed
for a variety of traits in multiple environments. Thus,
using GWAS-derived SNP markers to perform GS is an
approach that combines MAS and GS and can be used
in the real-world breeding programs. However, the pre-
dictive ability may be biased when GWAS-associated SNP
markers are used to predict the GEBVs in the same GWAS
panel. The GP will probably be lower if prediction perfor-
mance is tested in other panels with different individuals.
Similar approaches have been tested for many traits
in several crops and found it practical to do genome
breeding using GWAS-derived SNP markers [49–51, 53,
72]. Therefore, GP approach combining both MAS and GS
through GEBVs using associated SNP markers would be
valuable in molecular breeding for white rust resistance
in spinach and for other quantitative traits in other plant
species, and assessment of genomic prediction potential
is ongoing on several important traits in spinach [74].

Conclusion
In this study, 346 USDA spinach germplasm accessions
were phenotyped for white rust resistance under field
conditions; 23 accessions showed white rust resistance
or intermediate resistance with a disease rate 3.0 or
less based on 0–10 scale; and the seven accessions,
NSL 6098, PI 175311, PI 220686, PI 224959, PI 226671, PI
227045, and PI 648958 showed the highest white rust
resistant levels with a score of 2.0 or less, indicating their
suitability as parents in breeding programs to develop
white rust-resistant hybrids and cultivars. Genome-
wide association study (GWAS) was performed in the
346 accessions with 13 235 SNPs and identified nine
SNPs, chr2_53 049 132, chr3_58 479 501, chr3_95 114 909,
chr4_9 176 069, chr4_17 807 168, chr4_83 938 338, chr4_
87 601 768, chr6_1 877 096, and chr6_31 287 118, located
on chromosomes 2, 3, 4, and 6 associated with white
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rust resistance. Genomic prediction (GP) was tested
for prediction accuracy (PA) using Pearson’s correlation
coefficient (r) between the genomic estimation breeding
value (GEBV) and the observed values. High averaged
r values were observed in each SNP set using different
GP models and up to 0.84 when using GWAS-derived
significant SNP markers. The SNP markers and the high
PA can provide valuable information for breeders to
improve spinach by marker-assisted selection (MAS) and
genomic selection (GS).
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